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The fundamental equation describing the motion of incompressible viscous fluids for the
velocity u = u(x, t) : RN × (0, T ) → RN and the pressure p = p(x, t) : RN × (0, T ) → R
is the Navier-Stokes equation :

∂tu− µ∆u+ (u · ∇)u+∇p = 0 in RN for t ∈ (0, T ),

div u = 0 in RN for t ∈ (0, T ),

u|t=0 = u0 in RN ,

(1)

where ∂t = ∂/∂t and µ > 0 is the viscosity constant. Note that the Navier-Stokes equation
is a semilinear equation with a nonlinear term (u · ∇)u. In Kato [3], the unique existence
of strong solutions of (1) is proved by the Lp-Lq decay estimates of the Stokes semigroup.

On the other hand, quasilinear equations also appear in fluid dynamics. For instance,
free boundary problems for the Navier-Stokes equations and the compressible Navier-
Stokes equations. More precisely, the equations in the time-dependent domain are trans-
formed into the equations in a fixed domain by some change of variables to solve the
free boundary problems; that problem in the fixed domain is a quasilinear system. It is
difficult to solve quasilinear equations by semigroup theory only because of regularity-
loss. One of the methods to solve quasilinear equations is the maximal regularity for the
linearized problem.

In this lecture, I introduce one of the linear theories to obtain the maximal regularity
and how to prove the well-posedness by the maximal regularity estimates, especially the
global well-posedness for small initial data in the whole space. Applying these theories,
we consider the global well-posedness for a model of nematic liquid crystals in R3.

1 Maximal Regularity

We introduce the maximal regularity, which is a key tool to solve quasilinear parabolic
or parabolic-hyperbolic equations by the Banach fixed point argument. Note that the
following approach can be applied to problems with inhomogeneous boundary condition.
In this lecture, we mainly discuss the problem in the whole space.

Let A be the generator of an analytic semigroup on Banach space X. Let us consider
the Cauchy problem {

∂tu−Au = f in RN for t ∈ (0, T ),

u|t=0 = u0 in RN
(2)

with given f ∈ Lp((0, T ), X).
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Definition 1. A has the maximal regularity if the Cauchy problem (2) has a unique
solution satisfying

∥∂tu∥Lp((0,T ),X) + ∥Au∥Lp((0,T ),X) ≤ C∥f∥Lp((0,T ),X).

The operator-valued Fourier multiplier theorem [5] helps obtain the maximal regular-
ity. To apply this theorem, we prove R-boundedness of solution operator families for the
resolvent problem corresponding to (2):

λu−Au = f in RN , (3)

where λ is the resolvent parameter varying in a sector

Σϵ,λ0 = {λ ∈ C \ {0} | | arg λ| < π − ϵ, |λ| ≥ λ0}

for 0 < ϵ < π/2 and λ0 ≥ 0. Here, we introduce the definition of R-boundedness of
operator families and the operator-valued Fourier multiplier theorem.

Definition 2. A family of operators T ⊂ L(X,Y ) is called R-bounded on L(X,Y ), if
there exist constants C > 0 and p ∈ [1,∞) such that for any n ∈ N, {Tj}nj=1 ⊂ T ,
{fj}nj=1 ⊂ X and sequences {rj}nj=1 of independent, symmetric, {−1, 1}-valued random
variables on [0, 1], we have the inequality:{∫ 1

0

∥
n∑

j=1

rj(u)Tjfj∥pY du

}1/p

≤ C

{∫ 1

0

∥
n∑

j=1

rj(u)fj∥pX du

}1/p

.

The smallest such C is called R-bound of T , which is denoted by RL(X,Y )(T ).

Remark 3. Definition 2 with n = 1 implies the uniform boundedness of the operator
family T ; therefore, once we obtain the R-bounded solution operator families for (3), a
solution u of (3) satisfies the resolvent estimate for any λ ∈ Σϵ,λ0 and then the linear
operator A generates a analytic semigroup {eAt}t≥0.

Let S(R, X) be the Schwartz space of rapidly decreasing X valued functions.

Definition 4. A Banach space X is said to be a UMD Banach space, if the Hilbert
transform is bounded on Lp(R, X) for some p ∈ (1,∞). Here, the Hilbert transform H
operating on f ∈ S(R, X) is defined by

[Hf ](t) =
1

π
lim
ϵ→0

∫
|t−s|>ϵ

f(s)

t− s
ds (t ∈ R).

Remark 5. Let Ω be a domain in RN . Lp(Ω) is a UMD Banach space if 1 < p < ∞.

Theorem 6 (Weis [5]). Let X and Y be two UMD Banach spaces and 1 < p < ∞. Let
m be a function in C1(R \ {0},L(X,Y )) such that

RL(X,Y )({m(τ) | τ ∈ R \ {0}}) ≤ κ0 < ∞,

RL(X,Y )({τm′(τ) | τ ∈ R \ {0}}) ≤ κ1 < ∞
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with some constant κ0 and κ1. Then, the operator

Tmf = F−1[m(τ)F [f ]],

satisfies
∥Tmf∥Lp(R,Y ) ≤ Cp(κ0 + κ1)∥f∥Lp(R,X)

for all f ∈ S(R, X) with some positive constant Cp depending on p.

Remark 7. Since S(R, X) is dense in Lp(R, X), Tm is extended to a bounded linear
operator on Lp(R, X). Denoting this extension by Tm again, the above estimate holds for
f ∈ Lp(R, X).

The following lemma proved by [2, Theorem 3.3] is a sufficient condition for the R-
boundedness in RN .

Lemma 8. Let 1 < q < ∞ and let Λ be a subset of C. Let m(ξ, λ) be a function defined
on (RN \ {0})× Λ which is infinitely differentiable with respect to ξ ∈ RN \ {0} for each
λ ∈ Λ. Assume that for any multi-index α ∈ NN

0 there exists a positive constant Cα

depending on α such that
|∂α

ξ m(ξ, λ)| ≤ Cα|ξ|−|α|

for any (ξ, λ) ∈ (RN \ {0})× Λ. Let M(λ) be operators defined by

[M(λ)f ](x) = F−1[m(ξ, λ)F [f ](ξ)](x).

Then, the operator family {M(λ) | λ ∈ Λ} is R-bounded on L(Lq(RN)) and

RL(Lq(RN ))({M(λ) | λ ∈ Λ}) ≤ Cq,N max
|α|≤N+2

Cα

with some constant Cq,N depending on q and N .

2 Model of Nematic Liquid Crystals

The molecules of nematic liquid crystal flows as in a liquid phase; however, they have
the orientation order. In order to analyze the biaxial nematic liquid crystal flows, Beris
and Edwards [1] proposed the symmetric, traceless matrix as the director fields, which is
called Q-tensor. We consider the coupled system by the Navier-Stokes equations with a
parabolic-type equation describing the evolution of the director fields Q.

∂tu+ (u · ∇)u+∇p = ∆u+Div (τ(Q) + σ(Q)) in R3 for t ∈ (0, T ),

div u = 0 in R3 for t ∈ (0, T ),

∂tQ+ (u · ∇)Q− S(∇u,Q) = H in R3 for t ∈ (0, T ),

(u,Q)|t=0 = (u0, Q0) in R3.

(4)

Here, u = u(x, t) is the fluid velocity and p = p(x, t) is the pressure. For 3 × 3 matrix
field A with (j, k)th components Ajk, the quantity DivA is a vector with jth component
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∑N
k=1 ∂kAjk, where ∂k = ∂/∂xk. The tensors S(∇u,Q), τ(Q), and σ(Q) are

S(∇u,Q) = (ξD(u) +W (u))

(
Q+

I

3

)
+

(
Q+

I

3

)
(ξD(u)−W (u))− 2ξ

(
Q+

I

3

)
Q : ∇u,

τ(Q) = 2ξH : Q

(
Q+

I

3

)
− ξ

[
H

(
Q+

I

3

)
+

(
Q+

I

3

)
H

]
−∇Q⊙∇Q,

σ(Q) = QH −HQ,

where D(u) = (∇u + (∇u)T )/2 and W (u) = (∇u − (∇u)T )/2 denote the symmetric
and antisymmetric part of ∇u, respectively. A scalar parameter ξ ∈ R denotes the ratio
between the tumbling and the aligning effects that a shear flow would exert over the
directors. Furthermore, I is the 3× 3 identity matrix,

H = ∆Q− aQ+ b(Q2 − tr(Q2)I/3)− ctr(Q2)Q,

and the (i, j) component of ∇Q⊙∇Q is
∑3

α,β=1 ∂iQαβ∂jQαβ.
We consider the global well-posedness for (4) for small initial data in the following

solution class:
u ∈ H1

p ((0, T ), Lq(R3)3) ∩ Lp((0, T ), H
2
q (R3)3),

Q ∈ H1
p ((0, T ), H

1
q (R3;S0)) ∩ Lp((0, T ), H

3
q (R3;S0))

with certain p and q, where S0 = {Q : 3 × 3 matrix | Q = QT , trQ = 0}. This result is
based on [4].
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