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Instability and non-uniqueness in fluid dynamics

Elia Bruè

Università Bocconi

Monday 9-10 & 15-16, Tuesday 15-16, Thursday 15-16

This mini-course focuses on the instability and non-uniqueness of weak solutions to
the incompressible Euler and Navier-Stokes equations in both two and three spatial
dimensions. Two fundamental open problems in the field serve as focal points:

1. The uniqueness of Leray solutions to the three-dimensional Navier-Stokes
equations.

2. The uniqueness and well-posedness of the two-dimensional Euler equations in
vorticity formulation.

Recent advancements in addressing these challenges will be explored. The course
is organized as follows: an initial lecture establishes foundational knowledge on
weak solutions and existing well-posedness results. Subsequently, the focus shifts
to Leray-Hopf solutions to the Navier-Stokes equations, covering self-similar solu-
tions, instability, and non-uniqueness. In the third lecture, attention is directed
towards the instability of two-dimensional vortices and Vishik’s nonuniqueness the-
orem within the framework of the two-dimensional Euler equations with vorticity
in Lp. The final lecture delves into the realms of flexibility and convex integration
constructions within fluid dynamics.

Introduction to the theory of mixing for incompressible
flows

Gianluca Crippa

University of Basel

Tuesday 9-10, Wednesday 10:30-11:30, Thursday 9-10, Friday 10:30-11:30

Mixing in fluid flows is a ubiquitous phenomenon, which arises in many situations
ranging from physical processes, to industrial processes, to everyday occurrences
(such as mixing of cream in coffee). In my lectures, I will provide a gentle introduc-
tion to the theory of mixing from a PDE point of view, in which the main question
is to provide universal bounds on the decay of a suitable notion of mixing scale for a
passive scalar advected by an incompressible field, and to understand the sharpness
of such bounds. I will address the following topics:

1. The continuity equation and the flow of a vector field.

2. Mixing and mixing scales (geometric and analytical).

3. Lower bounds on the mixing scales for Lipschitz vector fields.

4. A short introduction to the DiPerna-Lions theory.
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5. Energy estimates and (non optimal) lower bounds for the analytical mixing
scale.

6. Mild regularity of the regular Lagrangian flow.

7. Exponential lower bound for the geometric mixing scale.

8. Scaling analysis in self-similar evolutions and optimality of the exponential
lower bounds.

Collective behavior: from particle to continuum models

Young-Pil Choi

Yonsei University

Monday 13:30-14:30, Tuesday 10:30-11:30, Thursday 10:30-11:30, Friday 9-10

Emergent aggregation and flocking phenomena that appear in many biological sys-
tems are simple instances of collective behavior. Recently, they have been extensively
studied in various scientific disciplines such as applied mathematics, physics, biology,
sociology, and control theory due to their biological and engineering applications. In
my lectures, I will introduce several different types of microscopic models describing
collective behaviors and discuss their applications. On the other hand, when the
number of particles is very large, the microscopic description becomes computation-
ally complicated. Thus, understanding how this complexity can be reduced is an
important issue. Concerning this matter, I will address recent advances in the rigor-
ous derivations from particles and the asymptotic limits connecting all the hierarchy
of models in this active field of research, including kinetic models, pressureless Euler
equations with nonlocal forces, and aggregation equations.

The well-posedness for the Navier-Stokes equations and its
related equations in the maximal regularity class

Miho Murata

Shizuoka University

Monday 10:30-11:30, Tuesday 13:30-14:30, Wednesday 9-10, Thursday 13:30-14:30

The fundamental equation describing the motion of incompressible viscous fluids
for the velocity u = u(x, t) : RN × (0, T ) → RN and the pressure p = p(x, t) :
RN × (0, T ) → R is the Navier-Stokes equation :

∂tu− µ∆u+ (u · ∇)u+∇p = 0 in RN for t ∈ (0, T ),

div u = 0 in RN for t ∈ (0, T ),

u|t=0 = u0 in RN ,

(1)

where ∂t = ∂/∂t and µ > 0 is the viscosity constant. Note that the Navier-Stokes
equation is a semilinear equation with a nonlinear term (u · ∇)u. In Kato [3], the
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unique existence of strong solutions of (1) is proved by the Lp-Lq decay estimates
of the Stokes semigroup.

On the other hand, quasilinear equations also appear in fluid dynamics. For
instance, free boundary problems for the Navier-Stokes equations and the compress-
ible Navier-Stokes equations. More precisely, the equations in the time-dependent
domain are transformed into the equations in a fixed domain by some change of
variables to solve the free boundary problems; that problem in the fixed domain is a
quasilinear system. It is difficult to solve quasilinear equations by semigroup theory
only because of regularity-loss. One of the methods to solve quasilinear equations
is the maximal regularity for the linearized problem.

In this lecture, I introduce one of the linear theories to obtain the maximal reg-
ularity and how to prove the well-posedness by the maximal regularity estimates,
especially the global well-posedness for small initial data in the whole space. Ap-
plying these theories, we consider the global well-posedness for a model of nematic
liquid crystals in R3.

Maximal Regularity

We introduce the maximal regularity, which is a key tool to solve quasilinear parabolic
or parabolic-hyperbolic equations by the Banach fixed point argument. Note that
the following approach can be applied to problems with inhomogeneous boundary
condition. In this lecture, we mainly discuss the problem in the whole space.

Let A be the generator of an analytic semigroup on Banach space X. Let us
consider the Cauchy problem{

∂tu−Au = f in RN for t ∈ (0, T ),

u|t=0 = u0 in RN
(2)

with given f ∈ Lp((0, T ), X).

Definition 1. A has the maximal regularity if the Cauchy problem (2) has a unique
solution satisfying

∥∂tu∥Lp((0,T ),X) + ∥Au∥Lp((0,T ),X) ≤ C∥f∥Lp((0,T ),X).

The operator-valued Fourier multiplier theorem [5] helps obtain the maximal
regularity. To apply this theorem, we prove R-boundedness of solution operator
families for the resolvent problem corresponding to (2):

λu−Au = f in RN , (3)

where λ is the resolvent parameter varying in a sector

Σϵ,λ0 = {λ ∈ C \ {0} | | arg λ| < π − ϵ, |λ| ≥ λ0}

for 0 < ϵ < π/2 and λ0 ≥ 0. Here, we introduce the definition of R-boundedness of
operator families and the operator-valued Fourier multiplier theorem.
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Definition 2. A family of operators T ⊂ L(X, Y ) is called R-bounded on L(X, Y ),
if there exist constants C > 0 and p ∈ [1,∞) such that for any n ∈ N, {Tj}nj=1 ⊂
T , {fj}nj=1 ⊂ X and sequences {rj}nj=1 of independent, symmetric, {−1, 1}-valued
random variables on [0, 1], we have the inequality:{∫ 1

0

∥
n∑

j=1

rj(u)Tjfj∥pY du

}1/p

≤ C

{∫ 1

0

∥
n∑

j=1

rj(u)fj∥pX du

}1/p

.

The smallest such C is called R-bound of T , which is denoted by RL(X,Y )(T ).

Remark 3. Definition 2 with n = 1 implies the uniform boundedness of the operator
family T ; therefore, once we obtain the R-bounded solution operator families for
(3), a solution u of (3) satisfies the resolvent estimate for any λ ∈ Σϵ,λ0 and then
the linear operator A generates a analytic semigroup {eAt}t≥0.

Let S(R, X) be the Schwartz space of rapidly decreasing X valued functions.

Definition 4. A Banach space X is said to be a UMD Banach space, if the Hilbert
transform is bounded on Lp(R, X) for some p ∈ (1,∞). Here, the Hilbert transform
H operating on f ∈ S(R, X) is defined by

[Hf ](t) =
1

π
lim
ϵ→0

∫
|t−s|>ϵ

f(s)

t− s
ds (t ∈ R).

Remark 5. Let Ω be a domain in RN . Lp(Ω) is a UMD Banach space if 1 < p < ∞.

Theorem 6 (Weis [5]). Let X and Y be two UMD Banach spaces and 1 < p < ∞.
Let m be a function in C1(R \ {0},L(X, Y )) such that

RL(X,Y )({m(τ) | τ ∈ R \ {0}}) ≤ κ0 < ∞,

RL(X,Y )({τm′(τ) | τ ∈ R \ {0}}) ≤ κ1 < ∞

with some constant κ0 and κ1. Then, the operator

Tmf = F−1[m(τ)F [f ]],

satisfies
∥Tmf∥Lp(R,Y ) ≤ Cp(κ0 + κ1)∥f∥Lp(R,X)

for all f ∈ S(R, X) with some positive constant Cp depending on p.

Remark 7. Since S(R, X) is dense in Lp(R, X), Tm is extended to a bounded linear
operator on Lp(R, X). Denoting this extension by Tm again, the above estimate
holds for f ∈ Lp(R, X).

The following lemma proved by [2, Theorem 3.3] is a sufficient condition for the
R-boundedness in RN .
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Lemma 8. Let 1 < q < ∞ and let Λ be a subset of C. Let m(ξ, λ) be a function
defined on (RN \{0})×Λ which is infinitely differentiable with respect to ξ ∈ RN \{0}
for each λ ∈ Λ. Assume that for any multi-index α ∈ NN

0 there exists a positive
constant Cα depending on α such that

|∂α
ξ m(ξ, λ)| ≤ Cα|ξ|−|α|

for any (ξ, λ) ∈ (RN \ {0})× Λ. Let M(λ) be operators defined by

[M(λ)f ](x) = F−1[m(ξ, λ)F [f ](ξ)](x).

Then, the operator family {M(λ) | λ ∈ Λ} is R-bounded on L(Lq(RN)) and

RL(Lq(RN ))({M(λ) | λ ∈ Λ}) ≤ Cq,N max
|α|≤N+2

Cα

with some constant Cq,N depending on q and N .

Model of Nematic Liquid Crystals

The molecules of nematic liquid crystal flows as in a liquid phase; however, they have
the orientation order. In order to analyze the biaxial nematic liquid crystal flows,
Beris and Edwards [1] proposed the symmetric, traceless matrix as the director
fields, which is called Q-tensor. We consider the coupled system by the Navier-
Stokes equations with a parabolic-type equation describing the evolution of the
director fields Q.

∂tu+ (u · ∇)u+∇p = ∆u+Div (τ(Q) + σ(Q)) in R3 for t ∈ (0, T ),

div u = 0 in R3 for t ∈ (0, T ),

∂tQ+ (u · ∇)Q− S(∇u,Q) = H in R3 for t ∈ (0, T ),

(u,Q)|t=0 = (u0, Q0) in R3.

(4)

Here, u = u(x, t) is the fluid velocity and p = p(x, t) is the pressure. For 3 × 3
matrix field A with (j, k)th components Ajk, the quantity DivA is a vector with jth

component
∑N

k=1 ∂kAjk, where ∂k = ∂/∂xk. The tensors S(∇u,Q), τ(Q), and σ(Q)
are

S(∇u,Q) = (ξD(u) +W (u))

(
Q+

I

3

)
+

(
Q+

I

3

)
(ξD(u)−W (u))− 2ξ

(
Q+

I

3

)
Q : ∇u,

τ(Q) = 2ξH : Q

(
Q+

I

3

)
− ξ

[
H

(
Q+

I

3

)
+

(
Q+

I

3

)
H

]
−∇Q⊙∇Q,

σ(Q) = QH −HQ,

where D(u) = (∇u+(∇u)T )/2 and W (u) = (∇u− (∇u)T )/2 denote the symmetric
and antisymmetric part of ∇u, respectively. A scalar parameter ξ ∈ R denotes the
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ratio between the tumbling and the aligning effects that a shear flow would exert
over the directors. Furthermore, I is the 3× 3 identity matrix,

H = ∆Q− aQ+ b(Q2 − tr(Q2)I/3)− ctr(Q2)Q,

and the (i, j) component of ∇Q⊙∇Q is
∑3

α,β=1 ∂iQαβ∂jQαβ.
We consider the global well-posedness for (4) for small initial data in the following

solution class:

u ∈ H1
p ((0, T ), Lq(R3)3) ∩ Lp((0, T ), H

2
q (R3)3),

Q ∈ H1
p ((0, T ), H

1
q (R3;S0)) ∩ Lp((0, T ), H

3
q (R3;S0))

with certain p and q, where S0 = {Q : 3× 3 matrix | Q = QT , trQ = 0}. This result
is based on [4].
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